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We consider transport of a passive scalar by an isotropic turbulent velocity field in
the presence of a mean scalar gradient. The velocity–scalar cospectrum measures the
distribution of the mean scalar flux across scales. An inequality is shown to bound
the magnitude of the cospectrum in terms of the shell-summed energy and scalar
spectra. At high Schmidt number, this bound limits the possible contribution of the
sub-Kolmogorov scales to the scalar flux. At low Schmidt number, we derive an
asymptotic result for the cospectrum in the inertial–diffusive range, with a −11/3
power law wavenumber dependence, and a comparison is made with results from
large-eddy simulation. The sparse direct-interaction perturbation (SDIP) is used to
calculate the cospectrum for a range of Schmidt numbers. The Lumley scaling result
is recovered in the inertial–convective range and the constant of proportionality was
calculated. At high Schmidt numbers, the cospectrum is found to decay exponentially
in the viscous–convective range, and at low Schmidt numbers, the −11/3 power law
is observed in the inertial–diffusive range. Results are reported for the cospectrum
from a direct numerical simulation at a Taylor Reynolds number of 265, and a
comparison is made at Schmidt number order unity between theory, simulation and
experiment.

1. Introduction
The problem of turbulent mixing of a passive scalar in the presence of a mean

scalar gradient has been the subject of extensive study, with recent theoretical work
focusing on anomalous scaling of the scalar at small scales (Shraiman & Siggia 2000).
As discussed in the review by Warhaft (2000), a number of open issues remain for
behaviour of passive scalar statistics in general, many of them related to the issue of
local isotropy. The reason for the ubiquity of a mean scalar gradient in studies of
passive scalar mixing is that the mean gradient acts as a source of scalar variance,
allowing a statistical steady state to be reached. The mean gradient makes the scalar
field non-isotropic, and so a mean scalar flux arises. The velocity–scalar cospectrum
measures how this flux is distributed across wavenumbers. If, as is thought, the
cospectrum decays faster than the scalar or energy spectra, then this is a measure
of the approach to isotropy at the smaller scales. Calculation of the scalar flux is of
practical importance, and the contribution to the flux from small scales is of relevance
to subgrid modelling and large-eddy simulation (Pullin 2000). Also of interest is the
effect of the Schmidt number, Sc, on the cospectrum, and hence the scalar flux, where
Sc is defined as the ratio of viscosity to the scalar diffusivity. The effect of Sc on
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scalar mixing remains a subject of ongoing research, see, for example, the experi-
mental work of Miller & Dimotakis (1996), and the simulations of Yeung, Xu &
Sreenivasan (2002).

The shell-summed velocity–scalar cospectrum, C(k), is defined so that the mean
scalar flux is given by

u1θ =

∫ ∞

0

dk C(k). (1.1)

where θ is the scalar fluctuation, u1 is the component of velocity in the direction of the
mean scalar gradient, and k is the wavenumber. Shell-summed spectra are sometimes
referred to as three-dimensional spectra and are calculated using an integration over
a spherical shell in wavenumber space. Lumley (1967) used a similarity hypothesis to
predict the shell-summed cospectrum of the velocity and potential temperature. For
the case of passive scalar mixing, Lumley’s equation (12) for the cospectrum in the
inertial–convective range becomes

C(k) ∼ µε1/3k−7/3, (1.2)

where µ is the mean scalar gradient, and ε is the energy dissipation rate. Mydlarski &
Warhaft (1998) measured the one-dimensional velocity–temperature cospectrum in a
wind tunnel under conditions for which the temperature was a passive scalar. They
found a wavenumber dependence of approximately k−2 in the inertial–convective
range for a Taylor Reynolds numbers, Rλ, of 582; see also Mydlarski (2003). Bos
et al. (2004) studied the importance of the pressure term in the evolution equation for
the cospectrum and found a k−2 scaling range for the cospectrum using large-eddy
simulation (LES). Herr, Wang & Collins (1996) performed an EDQNM calculation
of the cospectrum and compared it with direct numerical simulation (DNS) at an Rλ

of 81, although it should be noted that two constants were chosen in the EDQNM
calculation by matching the EDQNM and DNS cospectra. There has also been
work by Kaneda & Yoshida (2004) and Gargett, Merryfield & Holloway (2003) on
the related problem of the buoyancy flux spectrum in stably stratified turbulence,
although here we will exclusively consider the case of a passive scalar.

The velocity–scalar cospectrum was studied by O’Gorman & Pullin (2003) using
the stretched-spiral vortex model introduced by Lundgren (1982). They found that the
contribution to the cospectrum from the velocity directed parallel to the vortex tube
axes had a k−5/3 wavenumber-dependence to leading order. The next-order term had
a k−7/3 dependence, but its sign depended on the initial conditions. The contribution
from the velocity in the plane of the vortex structure depended on the choice of
vortex core. In addition, exact relations were derived relating the shell-summed and
one-dimensional cospectra, and the quadrature spectrum was shown to be zero.

Here we utilize the sparse direct-interaction perturbation (SDIP) introduced by
Kida & Goto (1997, hereinafter referred to as KG) with the name Lagrangian
direct-interaction approximation. It is a renormalized closure theory for second-order
turbulent statistics, and applies a similar procedure to Kraichnan’s direct-interaction
approximation (DIA), (Kraichnan 1959), in a Lagrangian framework. The SDIP is
simpler than the Lagrangian history DIA of Kraichnan (1965), and yields the same
integro-differential equations as the Lagrangian renormalized approximation (LRA)
obtained earlier by Kaneda (1981). This latter closure has been applied to passive
scalar mixing in two and three dimensions, see Kaneda (1986), Gotoh (1989) and
Gotoh, Nagaki & Kaneda (2000). The SDIP has been used to calculate the energy
spectrum (KG), and the scalar spectrum (Goto & Kida 1999), and the resulting
scaling exponents were found to be in agreement with classical phenomenology.
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Goto & Kida (2002) applied the SDIP to a simpler model to understand better
the basis of the approximation. In light of the importance of sparse coupling in
the approximation, the name sparse direct-interaction perturbation was then chosen
in place of Lagrangian direct-interaction approximation. There are other two-point
closures that have been successfully used to calculate turbulent energy and scalar
spectra, for example, the local energy-transfer (LET) theory of McComb, Filipiak &
Shanmugasundaram (1992). The SDIP is particularly promising for use here since
Goto & Kida (1999) were able to use it to recover a number of classical scaling
results for the scalar spectrum at different Sc.

In this paper we study the velocity–scalar cospectrum using a combination of theory
and simulation. The cospectrum is defined in § 2, and the form of the cospectrum at
different Sc is considered in § 3. An inequality is derived that bounds the magnitude
of the cospectrum, and this is shown to have implications for the cospectrum at high
Sc. This inequality is an extension of the one-dimensional cross-spectrum inequality
to the shell-summed case, and applied in particular to the velocity–scalar cospectrum.
At low Sc, the asymptotic form of the cospectrum in the inertial-diffusive range is
derived. The derivation is similar to the argument of Batchelor, Howells & Townsend
(1959) for the form of the scalar spectrum in the inertial–diffusive range. The use of
the SDIP closure to calculate the cospectrum is described in § 4. The Lumley (1967)
form is recovered in the inertial–convective range, and the closed equations are solved
numerically for a range of Sc. Finally, in § 5, we report results for the cospectrum
from both DNS and LES. The DNS was performed at Rλ of 265 and Sc of 0.7, and a
comparison is made with theory and experiment at this Sc. The LES was performed
at low Sc and agreement is found with the asymptotic form for the cospectrum in
the inertial–diffusive range.

2. The velocity–scalar cospectrum
We consider a passive scalar mixed by an incompressible, statistically homogeneous

and isotropic velocity field, ui(x, t). The scalar is assumed to have a uniform
mean scalar gradient, µ, in the 1 direction, so that we can decompose the scalar
as µx1 + θ(x, t). The scalar fluctuation θ(x, t) is statistically homogeneous, and
axisymmetric about the x1 axis, but not isotropic. By definition it has zero mean,
θ(x, t)= 0, where the overbar indicates an ensemble average.

If we define the velocity–scalar correlation by

Ruiθ (r) = ui(x, t) θ(x + r, t), (2.1)

then the shell-summed cospectrum of the scalar and the velocity component u1 is
defined by

C(k) =
1

(2π)3

∫
dSk

∫
dr Ru1θ (r) exp(−i k · r). (2.2)

Here the
∫

dSk integral is a surface integral over a spherical shell in wavenumber

space, and may be written as k2
∫ π

0
dψk

∫ 2π

0
dφk sin ψk . The

∫
dr integral is a volume

integral over all space. The shell-summed cospectrum has no imaginary part, as may
be seen by performing the shell integral of exp(−i k · r). An important property of the
cospectrum is that it integrates to the scalar flux, as given by (1.1). The shell-summed
cospectrum is thus a measure of the distribution of the scalar flux across scales.

One-dimensional spectra are often more convenient for experimental measurement,
and so we also define a one-dimensional velocity–scalar cospectrum,

C1d(k3) =
1

π

∫ ∞

−∞
Ru1θ (0, 0, r3) cos(k3r3) dr3, (2.3)
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see Bendat & Piersol (1986). The one-dimensional cospectrum also integrates to the
scalar flux,

u1θ =

∫ ∞

0

C1d(k3) dk3. (2.4)

It was shown in O’Gorman & Pullin (2003) that only the cospectrum of the scalar
and the velocity component in the direction of the mean scalar gradient is non-zero,
where this holds for both the shell-summed and one-dimensional cospectra.

3. The cospectrum at small and large Schmidt number
We consider the effects of Schmidt number on the cospectrum, where the Schmidt

number is defined as the ratio of viscosity to scalar diffusivity, Sc = ν/κ . In later
sections we will calculate the cospectrum using turbulence theory and DNS, but we
can use some simpler analysis to limit the possible behaviour of the cospectrum, and
in the case of low Sc to predict its asymptotic form.

3.1. The cospectrum inequality

Here we will derive an upper bound for the magnitude of the shell-summed velocity–
scalar cospectrum in terms of the energy and scalar spectra. This bound has close ties
to the one-dimensional cross-spectrum inequality and coherence function, discussed
in Bendat & Piersol (1986). In effect, we are extending the one-dimensional cross-
spectrum inequality to the three-dimensional shell-summed case, and applying it in
particular to the velocity–scalar cospectrum.

It is convenient to use the formulation of the SDIP calculation of § 4, where we
first work in a periodic box of side L, and then take the limit L → ∞. The velocity
field ui(x, t) can be decomposed as

ui(x, t) =

(
2π

L

)3 ∑
k

ũi(k, t) exp(i k · x), (3.1)

where ki = 2π ni/L, and ni ∈ �. The inverse Fourier transform is given by

ũi(k, t) =

(
1

2π

)3 ∫
d3x ui(x, t) exp(−i k · x), (3.2)

and a similar transformation is defined for the scalar fluctuation, θ(x, t). We then
define the second-order statistical quantities

Ṽij (k, t, t) =

(
2π

L

)3

ũi(k, t) ũj (−k, t), (3.3)

Z̃(k, t, t) =

(
2π

L

)3

θ̃ (k, t) θ̃(−k, t), (3.4)

W̃i(k, t, t) =

(
2π

L

)3

θ̃ (k, t) ũi(−k, t). (3.5)

The double reference to the time t is included to be consistent with the definition of
more complicated Lagrangian quantities in § 4.

For a given instance in the ensemble, we have

Re(θ̃ (k, t) ũ1(−k, t)) � |θ̃(k, t)| |ũ1(k, t)|, (3.6)
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where we have used ũ(−k, t) = ũ(k, t)∗. Taking an ensemble average we find that

Re(θ̃ (k, t) ũ1(−k, t)) � | θ̃(k, t) | | ũ1(k, t) | � (| θ̃ (k, t) |2 | ũ1(k, t) |2)1/2. (3.7)

The second inequality can be derived by considering the expression

(| θ̃ (k, t) | + ξ | ũ1(k, t) |)2, (3.8)

as a quadratic in the real number ξ , and requiring that it be non-negative.
Taking the limit L → ∞, we can relate Ṽij (k, t, t), Z̃(k, t, t) and W̃i(k, t, t) to power

spectral density functions. The shell-summed energy spectrum, E(k), scalar spectrum,
Θ(k), and velocity–scalar cospectrum, C(k), are given by

E(k) = 1
2

∫
dSk Ṽii(k, t, t), (3.9)

Θ(k) =

∫
dSk Z̃(k, t, t), (3.10)

C(k) =

∫
dSk W̃1(k, t, t), (3.11)

where
∫

dSk again denotes a surface integral over a shell in wavenumber space. We
will now use the fact that the shell-summed cospectrum has no imaginary part. Noting
that the isotropy of the velocity field implies that Ṽ 11(k, t, t) =E(k)/(6πk2), and using
inequality (3.7), we deduce that

C(k) �
1

k

(∫
dSkZ̃(k, t, t)1/2

)(
E(k)

6π

)1/2

. (3.12)

Similarly we can show that inequality (3.12) holds for −C(k), and so it also holds for
the magnitude |C(k)|. The scalar spectrum is anisotropic, and so we cannot perform
the surface integral without further knowledge of Z̃(k, t, t). Nonetheless, we can find
a bound in terms of the shell-summed scalar spectrum. Using the Cauchy–Schwartz
inequality we have∫

dSkZ̃(k, t, t)1/211/2 �

(∫
dSkZ̃(k, t, t)

)1/2 (∫
dSk

)1/2

= (4π k2 Θ(k))1/2, (3.13)

and so,

|C(k)| �

(
2 E(k) Θ(k)

3

)1/2

. (3.14)

A tighter bound might be deduced with more detailed knowledge of the scalar
anisotropy.

3.2. Implications of the bound

From (3.14) we see that the magnitude of the cospectrum is bounded by the geometric
mean of the scalar and energy spectra multiplied by a constant of order unity. To
discuss the implications of this, we first briefly review the phenomenology of the
scalar spectrum at different Sc.

We assume that the Reynolds number is sufficiently large for an inertial–
convective range to exist. We define kP as the wavenumber at the peak of the
energy spectrum or the scalar spectrum, whichever wavenumber is greater. The
Kolmogorov wavenumber is defined by kK =(ε/ν3)1/4, the Batchelor wavenumber is
given by kB =(ε/ν κ2)1/4 = S1/2

c kK , and the Obukhov–Corrsin wavenumber is given by
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kC = (ε/κ3)1/4 = S3/4
c kK . Then, for wavenumbers in the inertial–convective range, the

scalar spectrum has the form

Θ(k) ∝ εθε
−1/3k−5/3, kP � k � min(kK, kC), (3.15)

where εθ is the scalar dissipation and the constant of proportionality is known as the
Obukhov–Corrsin constant (see Tennekes & Lumley 1974). For large Sc a different
power law behavior is thought to exist in the viscous–convective range (Batchelor
1959),

Θ(k) ∝ εθν
1/2ε−1/2k−1, kK � k � kB, Sc 	 1. (3.16)

For very small Sc, in the inertial–diffusive range,

Θ(k) = 1
3
κ−3Kε2/3εθk

−17/3

(
1 +

2κµ2

εθ

)
, kC � k � kK, Sc � 1, (3.17)

where K is the Kolmogorov constant. We show this in Appendix A, using a direct
re-derivation of a result of Batchelor et al. (1959), modified for the case of a
mean scalar gradient. As noted by Chasnov (1991), the effect of the mean scalar
gradient can be captured by replacing the scalar dissipation with εθ + 2κµ2 in the
Batchelor et al. (1959) result. There are other theoretical predictions for the scalar
spectrum in the inertial–diffusive range; for example, Gibson (1968) found a k−3

wavenumber dependence. Finally, in the viscous–diffusive range, the scalar spectrum
decays exponentially.

Now consider the velocity–scalar cospectrum for the case of large Sc in the viscous–
convective range. According to (3.16), the scalar spectrum has a k−1 wavenumber
dependence, whereas the energy spectrum will be decaying exponentially with
wavenumber because k 	 kK . Therefore, the bound given by inequality (3.14) will
decay exponentially in this range, and we expect that the cospectrum will also decay
exponentially. This would imply that the contribution to the mean scalar flux at length
scales smaller than the Kolmogorov lengthscale is very small, even if Sc is very large.
It should be noted that if the scaling law given by (3.16) is correct, then as Sc → ∞
the scalar variance is unbounded; see Dimotakis & Miller (1990) for a discussion of
this issue.

In contrast, for the case of small Sc in the inertial–diffusive range, the scalar
spectrum has a wavenumber dependence of k−17/3 according to (3.17), the energy
spectrum has a k−5/3 wavenumber dependence because kP � k � kK , and so the bound
given by inequality (3.14) has a k−11/3 dependence. Therefore, in this wavenumber
range we cannot exclude either exponential or power law behaviour of the cospectrum
based on the inequality alone. However, we will be able to derive an asymptotic form
for the inertial–diffusive range in the next subsection.

3.3. Asymptotic form in the inertial–diffusive range

We consider the case of low Sc, and wavenumbers in the inertial–diffusive range,
kC � k � kK . The advection–diffusion equation for the scalar fluctuation is given by

∂

∂t
θ(x, t) + uj (x, t)

∂

∂xj

θ(x, t) = κ
∂2

∂xj∂xj

θ(x, t) − µu1(x, t), (3.18)

where we note the gradient forcing term. This can be written in Fourier space as[
∂

∂t
+ κk2

]
θ̃ (k, t) = −µũ1(k, t) − i

(
2π

L

)3 ∑
q

qj ũj (k − q, t)θ̃(q, t). (3.19)
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Following the argument of Batchelor et al. (1959), we note that the convolution sum
in (3.19) is dominated by wavenumbers q smaller than kC , that is |q| <kC . This is
justified because the scalar spectrum drops off rapidly for higher wavenumbers. Then,
assuming that k 	 kC , implies that |k − q| 
 k. We now argue that the time scales of
ũ1(k, t), ũj (k − q, t) and θ̃(q, t) are much longer that that of θ̃ (k, t). This can be seen
in the case of ũ1(k, t) and ũj (k − q, t) by comparing the inertial time scale ε−1/3 k−2/3

with the diffusive time scale κ−1 k−2 and using k 	 kC . Therefore, we can view the
right-hand side of (3.19) as a quasi-stationary source term and make a stationary
balance approximation by neglecting the time derivative. Multiplying by u1(−k, t),
taking an ensemble average, and using the definition (3.5) of W̃i(k, t, t) we find

W̃1(k, t, t) = − µ

κk2

(
2π

L

)3

ũ1(−k, t)ũ1(k, t)

− i

κk2

(
2π

L

)6 ∑
q

qj ũj (k − q, t)θ̃ (q, t)ũ1(−k, t). (3.20)

We have already argued that |q| � |k−q| 
 k, and so we make the further approxima-
tion that θ̃(q, t) is statistically independent of ũj (k − q, t) and ũ1(−k, t). The mean

θ̃ (q, t) is zero, and so

W̃1(k, t, t) = − µ

κ k2
Ṽ 11(k, t, t). (3.21)

Taking the limit L → ∞, and using (3.9) and (3.11) to make contact with shell-summed
spectra we find

C(k) = − 2µ

3κk2
E(k). (3.22)

The wavenumber k is in the inertial range, and so

E(k) = Kε2/3k−5/3, (3.23)

where K is the Kolmogorov constant, with the result

C(k) = −2µK

3κ
k−11/3ε2/3. (3.24)

Thus the cospectrum has a k−11/3 power law wavenumber-dependence in the inertial–
diffusive range. The asymptotic form (3.24) is found to be in agreement with the
SDIP result in § 4.4, and with results from LES in § 5.3.

We can also compare our asymptotic result for the cospectrum in the inertial–
diffusive range with the bound given by the cospectrum inequality. Substituting (3.23)
and (3.17) into (3.14) we find

|C(k)| � 2
3
µKε2/3k−11/3κ−1

(
εθ

2κµ2
+ 1

)1/2

. (3.25)

Thus the bound exceeds the magnitude of our asymptotic result for the cospectrum
by a factor (εθ/(2 κ µ2) + 1)1/2.

In summary, we have used some simple analyses to characterize the behaviour of
the cospectrum at both large and small Sc. We have mainly discussed inequality (3.14)
in the context of the viscous–convective range at large Sc, but it also applies more
generally. To learn more about the cospectrum in the inertial–convective range, and
for a more detailed characterization of the cospectrum at all scales we turn now to
the SDIP and numerical simulation.
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4. SDIP calculation
In this section, we will discuss the use of the SDIP to calculate the velocity–scalar

cospectrum for a range of Sc. We emphasize that we consider a statistically isotropic
velocity field, but a statistically non-isotropic scalar field. Fortunately, we will be able
to use incompressibility of the velocity field and the statistical axisymmetry of the
scalar field to describe the cospectrum using a single isotropic function. The resulting
SDIP equations are still considerably more complicated than those derived for the
scalar spectrum in the isotropic case (Goto & Kida 1999).

The basic formulation is described in § 4.1. The SDIP is applied in Appendix B and
the resulting equations are summarized in § 4.2. In § 4.3, we solve the equations in the
inertial–convective range, and in § 4.4 we find the asymptotic solution in the limit of
low Sc. Lastly, in § 4.5, we solve the equations numerically for a range of Sc.

4.1. Basic formulation

The notation we use is consistent with that of Goto & Kida (1999). A more detailed
account of some of the basic equations can be found in Section II of that paper,
although it should be noted that they deal with a statistically isotropic scalar field
without a mean gradient.

The velocity field evolves according to the Navier–Stokes equations,

∂

∂t
ui(x, t) + uj (x, t)

∂

∂xj

ui(x, t) = − ∂

∂xi

π(x, t) + ν
∂2

∂xj∂xj

ui(x, t), (4.1)

where π(x, t) is the pressure–density ratio, and the continuity condition,

∂

∂xi

ui(x, t) = 0. (4.2)

The scalar fluctuation evolves according to the advection–diffusion equation given by
(3.18). It is convenient to make use of a Lagrangian position function, ψ(x, t |x ′, t ′),
defined by

ψ(x, t |x ′, t ′) = δ3(x − y(t |x ′, t ′)), (4.3)

where a fluid element that is located at x ′ at time t ′, is located at y(t |x ′, t ′) at time
t � t ′. The Lagrangian position function evolves according to

∂

∂t
ψ(x, t |x ′, t ′) + uj (x, t)

∂

∂xj

ψ(x, t |x ′, t ′) = 0 (4.4)

with initial condition

ψ(x, t |x ′, t) = δ3(x − x ′). (4.5)

We can then define Lagrangian velocity and scalar fields as

vi(t |x, t ′) =

∫
d3x ′ui(x ′, t) ψ(x ′, t |x, t ′), (4.6)

and

θ (L)(t |x, t ′) =

∫
d3x ′θ(x ′, t)ψ(x ′, t |x, t ′). (4.7)

The Lagrangian velocity autocorrelation function is given by

Vij (r, t, t ′) = vi(t |x + r, t ′)uj (x, t ′). (4.8)
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We wish to calculate the velocity–scalar cospectrum, and so define Lagrangian cross-
correlation functions,

Wi(r, t, t ′) = θ (L)(t |x + r, t ′)ui(x, t ′), (4.9)

and

Yi(r, t, t ′) = vi(t |x + r, t ′)θ(x, t ′). (4.10)

The SDIP is formulated in Fourier space by first assuming that the flow is in a
periodic box of side L. The velocity field ui(x, t) can then be decomposed as in (3.1),
and the inverse Fourier transform is given by (3.2). Similar transforms are defined for
the other variables. The limit L → ∞ is taken at a later stage. The Fourier transforms
of the two-point statistics are given by

Ṽ ij (k, t, t ′) =

(
2π

L

)3

ṽi(t |k, t ′)ũj (−k, t ′), (4.11)

W̃i(k, t, t ′) =

(
2π

L

)3

θ̃ (L)(t |k, t ′)ũi(−k, t ′), (4.12)

Ỹi(k, t, t ′) =

(
2π

L

)3

ṽi(t |k, t ′)θ̃ (−k, t ′). (4.13)

It is often more convenient to work with incompressible projections of Ṽ ij (k, t, t ′)

and Ỹ i(k, t, t ′), and so we define

Q̃ij (k, t, t ′) = P̃ im(k)Ṽ mj (k, t, t ′), (4.14)

X̃i(k, t, t ′) = P̃ im(k)Ỹ m(k, t, t ′), (4.15)

where P̃ ij (k) = δij − kikj/k2. After taking the limit L → ∞ we can relate Ṽ ii(k, t, t)

to the shell-summed energy spectrum, E(k), and W̃ 1(k, t, t) to the shell-summed
velocity–scalar cospectrum, C(k), see (3.9) and (3.11), respectively. The shell-summed
cospectrum can also be related to Ỹ by noting that W̃ 1(k, t, t) = Ỹ 1(−k, t, t).

4.2. Closed equations

The application of the SDIP closure is given in Appendix B. Here, we will summarize
the resulting equations for the case of an isotropic velocity field and a scalar with a
mean gradient in the ‘1’ direction. We also assume statistical stationarity. With these
assumptions it is shown in Appendix B that we can write

Q̃ij (k, t, t ′) = 1
2
P̃ ij (k)Q†(k, t − t ′), (4.16)

and

W̃i(k, t, t ′) = P̃ i1(k)µW †(k, t − t ′), (4.17)

for some functions Q†(k, t − t ′) and W †(k, t − t ′).
The closed SDIP equations are then given by

W †(k, t) =

(
− 1

2

∫ t

0

Q†(k, t ′) exp[κk2t ′] dt ′ + W †(k, 0)

)
exp[−κk2 t], (4.18)

and

2k2(ν + κ)W †(k, 0) + Q†(k, 0) = 1
2

∫ ∫
�k

dpdq
πpq

k

σ (k, p, q)

q2

∫ ∞

0

dtM(k, p, q, t),

(4.19)
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where

M(k, p, q, t) = (k2 − q2)(k2 − p2 + q2)Q†(k, t)W †(q, t)Q†(p, t)Q†(p, 0)−1

+ ((p2 − q2)2 − k2(p2 − 3q2))Q†(p, t)W †(q, t)Q†(k, t)Q†(k, 0)−1

+ exp[−κq2t]Q†(k, t)Q†(p, t)q2(−4k2W †(k, 0)Q†(k, 0)−1

− (k2 + p2 − q2)W †(p, 0)Q†(p, 0)−1) + (2p2(q2 + k2 − p2)

− 4q2k2)Q†(p, t)W †(k, t)Q†(q, t)Q†(q, 0)−1 + exp[−κk2t]((p2 − q2)2

− k2(p2 − 3q2))Q†(p, t)W †(q, 0)Q†(q, t)Q†(q, 0)−1, (4.20)

and

σ (k, p, q) =
(k + p + q)(k + p − q)(k − p + q)(−k + p + q)

4 p2 k2
. (4.21)

The wavenumber integral is given by∫ ∫
�k

dpdq =

∫ ∞

0

dp

∫ k+p

|k−p|
dq.

The linear integral equation (4.19), together with (4.18), are sufficient to determine
W †(k, 0) when Q†(k, t) has been specified.

4.3. Inertial–convective range

Here we will solve (4.18) and (4.19) for W †(k, 0) in the inertial–convective range,
that is in the wavenumber range where viscosity and diffusivity are unimportant.
We introduce a non-dimensional wavenumber k̂ = k/kK , and a non-dimensional time
τ = tε1/3k2/3, where kK = (ε/ν3)1/4 is the Kolmogorov wavenumber. It was shown in
KG that according to the SDIP, the velocity correlation function Q†(k, t) can be
written as

Q†(k, t) =
1

2π
Kε2/3k−11/3Q(k̂, τ ), (4.22)

where K = 1.722 is the Kolmogorov constant. In particular, in the inertial range we
have

Q†(k, t) =
1

2π
Kε2/3k−11/3Q(0, τ ). (4.23)

Assuming we are in the inertial–convective range means that we can effectively set ν

and κ to zero in (4.18), (4.19) and (4.20). Thus, there are no characteristic scales, and
we can look for solutions of the form

W †(k, 0) = − 1

2π
γ ε1/3k−13/3, (4.24)

where γ is a constant to be determined. Then, by (4.18),

W †(k, t) = W †(k, 0)

(
1 +

K

2γ
R

(
0, k2/3ε1/3t

))
, (4.25)

where R(k̂, τ ) is given by

R(k̂, τ ) = exp
[
−k̂4/3τ/Sc

] ∫ τ

0

dτ ′Q(k̂, τ ′) exp
[
k̂4/3τ ′/Sc

]
. (4.26)

Note that we will use R(k̂, τ ) for non-zero k̂ in § 4.4.
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Substituting (4.23), (4.24) and (4.25), into (4.19), the powers of k factor out, and we
find after some changes of integration variables that

γ = −1

a
(1 + bK), (4.27)

where

a = 1
4

∫ ∫
�1

dpdq
σ (1, p, q)

q2
pq

[
(1 − q2)(1 − p2 + q2)q−13/3f (p)

− (1 + p2 − q2)q2p−13/3f (p) − 4q2p−11/3f (p) + ((p2 − q2)2

− (p2 − 3q2))p−11/3q−13/3f (p) + (2p2(q2 + 1 − p2) − 4q2)p−13/3f

(
q

p

)

+ ((p2 − q2)2 − (p2 − 3q2))p−13/3q−13/3f

(
q

p

) ]
, (4.28)

b = 1
8

∫ ∫
�1

dpdq
σ (1, p, q)

q2
pq

[
(1 − q2)(1 − p2 + q2)q−13/3g(p, q)

+ ((p2 − q2)2 − (p2 − 3q2))p−11/3q−13/3g(p, q)

+ (2p2(q2 + 1 − p2) − 4q2)p−11/3h(p, q)
]
, (4.29)

and

f (p) =

∫ ∞

0

dτQ(0, τ )Q
(
0, p2/3τ

)
, (4.30)

g(p, q) =

∫ ∞

0

dτQ(0, τ )Q
(
0, p2/3τ

)
R

(
0, q2/3τ

)
, (4.31)

h(p, q) =

∫ ∞

0

dτQ
(
0, p2/3τ

)
Q

(
0, q2/3τ

)
R(0, τ ). (4.32)

Several of the terms in (4.28) and (4.29) contain non-integrable singularities, but these
can be shown to cancel each other to give finite values for a and b. It is such cancella-
tions of singularities that allow Lagrangian reformulations of the DIA to give an en-
ergy spectrum with a k−5/3 wavenumber dependence in the inertial range; see McComb
(1990) and Leslie (1973). To evaluate the constant γ we must specify Q(0, τ ). Compar-
ing with KG we find that their function Q̌†(τ ) is given by Q̌†(τ ) = Q(0, K−1/2 τ ), and
we repeated their numerical calculation to determine Q̌†(τ ). Performing the integrals in
(4.28) and (4.29), we found a = −0.44 and b = 0.070, implying γ = 2.6. The numerical
integrations in this paper were carried out using adaptive Gauss–Konrod integration
routines from the GNU Scientific Library (Galassi et al. 2001).

The shell-summed cospectrum can be evaluated using (3.11) and (4.17) to give

C(k) = − 4
3
µγ ε1/3k−7/3. (4.33)

Thus, the SDIP agrees with the Lumley (1967) form for the cospectrum in the
inertial–convective range (1.2), and also gives the constant of proportionality.
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4.4. The SDIP equations at low Sc

Here we will derive the asymptotic form of the SDIP equations for Sc � 1. We will
then compare it with the non-SDIP asymptotic result of § 3. It will be useful, both here
and when obtaining numerical solutions, to write (4.18) and (4.19) in non-dimensional
form. We introduce the non-dimensional function W (k̂) defined by

W †(k, 0) = − 1

2π
γ ε1/3k−13/3W (k̂). (4.34)

The limit k̂ → 0 represents the inertial–convective range, and so from (4.24) we find
that W (0) = 1. Some changes of integration variables result in the following linear
integral equation for W (k̂),

N1(k̂)W (k̂) + N2(k̂) +

∫ ∞

0

dqN3(k̂, q)W (k̂q) = 0, (4.35)

where

N1(k̂) = 2k̂4/3

(
1 +

1

Sc

)
γ

− Kγ

∫ ∞

0

dq

∫ 1+q

|1−q|
dp

∫ ∞

0

dτ
p

q
σ (1, p, q)p−11/3Q

(
k̂p, τp2/3

)
×

[
− exp

[
− k̂4/3q2τ/Sc

]
q2Q(k̂, τ )Q(k̂, 0)−1

+ exp
[
−k̂4/3τ/Sc

](
1
2
p2(q2 + 1 − p2) − q2

)
Q

(
k̂q, τq2/3

)
Q(k̂q, 0)−1

]
, (4.36)

N2(k̂) = −KQ(k̂, 0) − 1
8
K2

∫ ∞

0

dq

∫ 1+q

|1−q|
dp

∫ ∞

0

dτ
p

q
σ (1, p, q)Q

(
k̂p, τp2/3

)
×

[
(1 − q2)(1 − p2 + q2)Q(k̂, τ )Q

(
k̂p, 0)−1R(k̂q, τq2/3

)
q−13/3

+ ((p2 − q2)2 − p2 + 3q2)Q(k̂, τ )Q
(
k̂, 0)−1R(k̂q, τq2/3

)
p−11/3q−13/3

+ (2p2(q2 + 1 − p2) − 4q2)Q
(
k̂q, τq2/3

)
Q(k̂q, 0)−1R(k̂, τ )p−11/3

]
, (4.37)

N3(k̂, q) = − 1
4
γKq−13/3

∫ 1+q

|1−q|
dp

∫ ∞

0

dτ
p

q
σ (1, p, q)

×
[
(1 − q2)(1 − p2 + q2)Q(k̂, τ )Q

(
k̂p, τp2/3

)
Q(k̂p, 0)−1 exp

[
− k̂4/3q2τ/Sc

]
+((p2 − q2)2 − p2 + 3q2)p−11/3Q

(
k̂p, τp2/3

)
× (Q(k̂, τ )Q(k̂, 0)−1 exp

[
− k̂4/3q2τ/Sc

]
+Q

(
k̂q, τq2/3

)
Q(k̂q, 0)−1 exp

[
− k̂4/3τ/Sc

])
− p2(1+q2 −p2)Q(k̂, τ )Q

(
k̂q, τq2/3

)
Q(k̂q, 0)−1exp

[
−k̂4/3p2τ/Sc

]]
. (4.38)

Note that R(k̂, τ ) is defined by (4.26), and that we have effectively combined (4.18)
and (4.19) into one equation for W (k̂).

For clarity of analysis when taking the small Sc limit we follow Goto & Kida (1999)
by introducing the rescaled quantities k̂ = k̂sS

α
c and W (k̂) = Ws(k̂s)S

β
c , where k̂s and

Ws are assumed to be order unity as Sc → 0. The Kolmogorov wavenumber and the
Obukhov–Corrsin wavenumber then correspond to α = 0 and α = 3/4, respectively.
We wish to consider wavenumbers k 	 kC and so α < 3/4. Typical exponential factors
involving Sc are rewritten as

exp
[
−k̂4/3τ/Sc

]
= exp

[
−k̂4/3

s τS4α/3−1
c

]

 0, (4.39)
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because 4α/3 − 1 < 0. Therefore in (4.35) we can neglect N3, and N1 is approximated
by

N1 
 2k̂4/3
s S4α/3−1

c γ . (4.40)

Care must be taken with the function R(k̂, τ ), which is written using the rescaled
quantities as

R(k̂, τ ) =

∫ τ

0

dτ ′Q(k̂, τ ′) exp
[

− k̂4/3
s S4α/3−1

c (τ − τ ′)
]
. (4.41)

Noting that τ � τ ′ we have

N2 
 −KQ
(
k̂sS

α
c , 0

)
. (4.42)

The relevant scaling for Ws(k̂s) is then β = −4α/3 + 1, with the result

Ws(k̂s) =
KQ

(
k̂sS

α
c , 0

)
2k̂

4/3
s γ

. (4.43)

Returning to unscaled variables, we have

W (k̂) =
KQ(k̂, 0)Sc

2k̂4/3γ
, k 	 kC. (4.44)

The corresponding form for the shell-summed cospectrum is

C(k) = − 2µ

3κk2
E(k), k 	 kC, (4.45)

and for kC � k � kK we recover (3.24). Therefore the SDIP equation is consistent with
the asymptotic result of § 3.3 for the inertial–diffusive range that was derived using
the simpler Batchelor et al. (1959) type analysis. The SDIP asymptotic form (4.45) is
more general since it applies in the viscous–diffusive range also. The SDIP equations
are solved numerically in § 4.5 and the asymptotic form (4.45) is verified.

4.5. Numerical solution

Here we will solve (4.35) numerically for a range of values of Sc. Equation (4.35)
is an inhomogeneous Fredholm integral equation of the second kind. As written,
the integrals giving N1(k̂)W (k̂) and

∫ ∞
0

dqN3(k̂, q)W (k̂ q) do not converge, because
of a non-integrable singularity as (p → 0, q → 1). These singularities do cancel each
other, but involve the unknown function W (k̂) in a way that makes adding and
subtracting the singularity difficult. Therefore, the method of solution chosen was to
use a Newton–Raphson solver. This simplifies the problem because calculation of the
residuals requires finding the left-hand side of the equation, but not each individual
term. Although the equation is linear, in practice two iterations were required for
good accuracy.

The q integration was performed using a Gauss–Jacobi rule, and the p and τ

integrations were performed using adaptive Gauss–Konrod integration. The Jacobian
required for the Newton–Raphson solver was calculated using finite differences, and
interpolations were performed using cubic and bicubic spline interpolation for W (k̂)
and Q(k̂, τ ), respectively.

The results were found to be converged when the integral equation was evaluated
at twenty points, and when for the q integration the integrand was evaluated at
twenty-four points. The integral equation was evaluated at the same points as where
W (k̂) was stored, but these points were chosen to be different from the quadrature
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Figure 1. SDIP results for the compensated shell-summed velocity–scalar cospectrum:
(a) Sc = 1 (solid), 2 (dashed), 10 (dotted), and 100 (dash-dotted). (b) Sc = 1 (solid), 10−1

(dashed), 10−2 (dash-dotted), 10−3 (dotted), and 10−4 (dash-dot-dotted).

points for the q integration. This was necessary because W enters the q integral as
W (k̂q), and so, for small k̂, the q integration must extend to large values for accuracy.
A rescaling to a form with W (q) was not possible without the undesirable effect of
making the location of the singular points a function of k̂.

Solving (4.35) obviously requires knowledge of the two-time two-point velocity
statistics through the function Q(k̂, τ ). This was obtained by repeating the SDIP
calculation of KG, involving the solution of a coupled system of a nonlinear integral
equation, and a second-order integro-differential equation. Our results for Q(k̂, 0)
were found to match their reported results to within graphing accuracy.

The shell-summed cospectrum is related to W (k̂) by

C(k) = − 4
3
µγ ε1/3k−7/3W (k̂), (4.46)

and figure 1(a) shows the results for the compensated shell-summed cospectrum for
a range of Sc > 1. As might be expected, the cospectrum decays more slowly for
increasing Sc, but nonetheless smoothly approaches the inertial–convective limit in
each case. Note that we did not enforce the inertial–convective limit, W (0) = 1, so that
this condition is a check on the consistency of our results with the inertial–convective
calculation. There is a characteristic bump structure, which is located at approximately
0.3 kK for Sc = 1. The cospectrum quickly reaches an asymptotic form for large Sc,
and when graphed there was no visible difference between the cospectra at Sc =100
and 1000. As was discussed in § 3, there seems to be no power-law behaviour in
the viscous–convective range. The compensated shell-summed cospectrum is shown
in figure 1(b) for a range of small Sc. Again there is a smooth approach to the
inertial–convective limit in each case.

In figure 2 we compare the numerical solution to the SDIP equation at a range of
Sc � 1 with the inertial–diffusive power law form (3.24). In contrast to figure 1(b), we
have scaled the wavenumber with the Obukhov–Corrsin wavenumber rather than the
Kolmogorov wavenumber, so that the normalized inertial–diffusive asymptotic result
is independent of Sc. The approach to the power law form is evident for the lower
Sc cospectra. In figure 3 we make a comparison at Sc =10−4 of the SDIP asymptotic
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Figure 2. SDIP results for the compensated shell-summed velocity–scalar cospectrum at
low Sc (same key as figure 1b). Here the wavenumber has been normalized with the
Obukhov–Corrsin wavenumber, and the thick solid line shows the inertial–diffusive asymptotic
result given by (3.24).
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Figure 3. SDIP result for the compensated shell-summed velocity–scalar cospectrum at
Sc = 10−4 (solid) compared with the SDIP asymptotic form given by (4.45) (dashed).
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Figure 4. SDIP results for the shell-summed velocity–scalar cospectrum (uncompensated)
at Sc = 10−4 (dashed), 1 (solid), and 104 (dotted). The power laws k−7/3 and k−11/3 are also
shown for reference.

form (4.45), and the SDIP numerical result. The agreement of the numerical result
with the SDIP asymptotic form is excellent in the viscous–diffusive range.

Finally, to summarize our results for the effect of Sc on the cospectrum, figure 4
shows the shell-summed cospectrum in uncompensated form for Sc = 10−4, 1, 104,
making clear the two distinct power law ranges for small Sc. At large Sc, the relatively
small effect of changes in Sc is evident, at least when the wavenumber is scaled
with the Kolmogorov wavenumber, corresponding to varying the diffusivity with the
viscosity and energy dissipation held constant. Comparison with experiment, DNS,
and the stretched-spiral vortex model at Sc of order unity will be made in § 5.2.

5. Numerical experiments
Here, results are reported for a DNS at Sc order unity and an LES at low Sc. In

both the DNS and the LES, a statistically homogeneous and isotropic velocity field
mixed a passive scalar with a mean scalar gradient.

5.1. Direct numerical simulation

A DNS was performed on the QSC supercomputer at a Taylor Reynolds number,
Rλ, of 265 and Sc of 0.7, and the velocity–scalar cospectrum was calculated. The
velocity field was evolved according to the Navier–Stokes equations, and the scalar
was evolved using the advection–diffusion equation. Statistics were calculated at a
statistically stationary state achieved by forcing the velocity field at low wavenumbers.
A pseudospectral method was used, and further details of the numerical method may
be found in O’Gorman & Pullin (2004). Results from an additional simulation at
Rλ = 167 are also reported, and parameters describing the simulations are summarized
in table 1. The Courant number used was relatively low because the time step was
fixed so that two-time statistics could be collected easily. The value of kmax/kK used
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Grid Rλ Tstat/Teddy Sc kmax/kK Rl θ 2/(µlε)
2 k0 l C

5123 265 10.5 0.7 1.05 1901 0.45 1.00 0.48
2563 167 9.3 0.7 1.00 779 0.38 0.99 0.51

Table 1. Simulation parameters for the stationary period of the DNS. Teddy is the eddy turnover
time, Tstat is the time over which the statistics are collected, kmax is the largest dynamically
important wavenumber, Rl is the Reynolds number based on the integral length scale l, the
turbulent length scale is lε = u3

rms/ε where urms is the root-mean-square velocity, k0 is the
smallest wavenumber, and C is the Courant number.
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Figure 5. Compensated spectra from the DNS at 5123 (solid line) and 2563 (dashed line):
(a) energy spectra, (b) scalar spectra.

is at the low end of the range of commonly used values when passive scalar statistics
are collected at Sc = 0.7.

For both simulations, the shell-summed energy spectra are shown in figure 5(a), and
the shell-summed scalar spectra are shown in figure 5(b). These spectra are shown in
compensated form, and are useful as a reference when considering the velocity–scalar
cospectrum. A small inertial range and a bump in the dissipation range are apparent
for the energy spectra. The slope of the scalar spectra in the convective range is
shallower than k−5/3, although it could be argued that a true inertial–convective range
is not apparent at these Reynolds numbers.

The shell-summed velocity–scalar cospectra for the two simulations are shown in
compensated form in figure 6(a). The cospectral slope is shallower than k−7/3 in the
inertial–convective range. Note that the cospectra for the simulations at Rλ of 265 and
167 do not exactly coincide for intermediate or large wavenumber, at least with the
normalization used. This is in contrast to the energy and scalar spectra in figures 5(a)
and 5(b) which appear to show a universal (Rλ independent) wavenumber range.
Mydlarski (2003) also found a dependence on Rλ for the related one-dimensional
heat flux structure function in the inertial–convective range. Further investigation at
a range of different Rλ seems warranted.

The one-dimensional cross-spectrum inequality is closely related to the spectral
coherence, see Bendat & Piersol (1986). Similarly, using the the cospectral inequality
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Figure 6. DNS results at 5123 (solid line) and 2563 (dashed line): (a) compensated
shell-summed velocity–scalar cospectra, (b) shell-summed spectral coherence compared with a
k−4/3 power law.

(3.14) as a guide, we can define a shell-summed spectral coherence,

H (k) =
3C(k)2

2E(k)Θ(k)
, (5.1)

so that H (k) � 1. We note that whereas the definition of the one-dimensional spectral
coherence involves the quadrature spectrum, the shell-summed cross-spectrum is real
by definition. The magnitude of H (k) is a measure of how correlated the scalar and
velocity Fourier components are at a given wavenumber, and is clearly a measure
of the approach to isotropy at small scales. In figure 6(b), we plot H (k) from the
DNS, noting that if the Lumley scaling form (1.2) holds, then H (k) will have a k−4/3

wavenumber-dependence in the inertial–convective range. The slope in the inertial–
convective range is shallower than k−4/3. The maximum value of H (k) is approximately
0.6 and this occurs at the lowest wavenumber. Note that we have omitted the lowest
wavenumber for each simulation in figures 5(a), 5(b) and 6(a) for readability.

Unlike for the normalized cospectra in figure 6(a), we do not expect the spectral
coherence functions to coincide at different Rλ. Assume for the moment that the
normalization used in figure 6(a), namely C(k)µ−1ε1/4ν−7/4, gives an approximately
universal form for the cospectrum when plotted against k/kK . We can also use the
standard universal forms for the energy and scalar spectra as these give good collapse
of the energy and scalar spectra in figures 5(a) and 5(b). Then the shell-summed
spectral coherence should vary in the same way with Rλ as the non-dimensional
number ε−1

θ µ2ν, and this can be expected to have a strong Rλ dependence.

5.2. Comparison of DNS results with theory and experiment

We make a comparison of the DNS results for the cospectrum with the SDIP
result of § 4, the stretched-spiral vortex model of O’Gorman & Pullin (2003), and
the experimental result of Mydlarski & Warhaft (1998). We take Sc = 0.7, except in
the case of the stretched-spiral vortex model where Sc is restricted to be unity. For
this model we also consider only the component of the cospectrum owing to axial
motion in the vortex structures, see O’Gorman & Pullin (2003) for further details.
The experimental result was for the one-dimensional cospectrum of the velocity u1
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Figure 7. Comparison of one-dimensional velocity–scalar cospectra from the stretched-spiral
vortex model (dashed), experimental data from Mydlarski & Warhaft (1998) at Rλ =582 (solid),
DNS at Rλ = 265 (dash-dot-dotted), SDIP inertial-convective (dotted), and SDIP (dash-dotted).

and temperature, C1d(k3), at Rλ of 582. Note that in the experiment, the direction of
the scalar gradient, and hence the scalar flux, was perpendicular to the direction in
which the cospectrum was measured. The experimental data were rather noisy, and
so we have applied a one-third octave smoothing filter. To make the comparison,
we convert the SDIP and stretched-spiral vortex model shell-summed cospectra to
one-dimensional cospectra using the following formula derived in O’Gorman & Pullin
(2003),

C1d(k3) = 3
4

∫ ∞

k3

k2 + k2
3

k3
C(k) dk. (5.2)

The one-dimensional cospectrum was calculated directly in the DNS.
The cospectra are shown in figure 7 in compensated form, where we have also

shown a straight line representing the inertial–convective SDIP result. The DNS
cospectrum was calculated by time-averaging a sequence of normalized spectra, and
so a rough estimate of the error is given by the time variation at a given wavenumber.
At k/kk = 0.05 we found that the standard deviation of the compensated cospectrum
C1d(k3)µ

−1ε1/4ν−7/4(k3/kK )7/3 was 0.14. It is difficult to estimate the error in the
experimental cospectrum, but we note that the unfiltered compensated cospectrum
had excursions of the order of half a decade in the inertial–convective range.

The shapes of the cospectra are similar in all cases, although the SDIP cospectrum
is closer than the other cospectra to a k−7/3 power law in the inertial–convective
range. The DNS has a similar spectral slope to that of the experimental result which
was reported as k−2. The SDIP cospectrum seems to be too large in the inertial–
convective range, and in this context it is worth noting that the SDIP value for the
Obukhov–Corrsin differs from experimental values by a factor of about a half. The
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discrepancy may be related to the strong assumption used in the SDIP closure of
statistical independence between the position function and several other variables.

5.3. Large-eddy simulation at low Sc

A large-eddy simulation (LES) was performed to verify the asymptotic results (3.17)
and (3.24) for the scalar spectrum and velocity–scalar cospectrum, respectively, at low
Sc in the inertial–diffusive range. Our simulation is similar to the LES of Chasnov
(1991), where a comparison was made with the asymptotic form (3.17) for the scalar
spectrum. Chasnov found excellent agreement in the far inertial–diffusive range, but
the agreement in the near inertial–diffusive range was not as good. As was the case
for Chasnov, we do not need a subgrid model for the scalar because we resolve the
diffusive range. Our subgrid model for the velocity is different from that used by
Chasnov.

A statistically stationary state was reached in the same way as in the DNS by forcing
the velocity at the low wavenumbers, and with a mean scalar gradient acting as the
source for the scalar variance. The resolution used was 643 gridpoints, at an Rλ of
1500, and with Sc = 2 × 10−4. Statistics were collected over thirty large-eddy turnover
times, and time-averaged spectra are reported. The details of the velocity forcing and
the pseudospectral method are the same as in Pullin (2000). We used the stretched-
vortex SGS model of Misra & Pullin (1997), with vortex alignment according to the
locally resolved strain rates (model 1a), and a spiral-vortex-type energy spectrum at
the subgrid scales. Evaluation of the second-order velocity structure function was used
to calculate the subgrid energy, see Voelkl, Pullin & Chan (2000) and Pullin (2000)
for further details. This LES method has the advantage of dynamically giving a value
for the Kolmogorov constant. The time-averaged value was K = 1.40 with a standard
deviation of 0.05, which may be compared with the more commonly accepted value
of K = 1.6 (Sreenivasan 1995) We evaluate expressions (3.17) and (3.24) using the
value for K dynamically calculated by the LES because we need a value of K that is
consistent with the energy spectrum in the LES in order to test the validity of these
asymptotic expressions fairly.

The LES result for the velocity–scalar cospectrum, and the asymptotic result given
by (3.24) are compared in figure 8. The agreement is reasonable for wavenumbers
in the inertial–diffusive range, although the asymptotic result is lower than the LES
result. The LES result for the scalar spectrum, and the asymptotic result given by
(3.17) are compared in figure 9(a). The Obukhov–Corrsin wavenumber corresponds to
kC/kK 
 0.002, and so we can see that in the inertial–diffusive range the agreement is
quite good. Thus, LES seems to confirm the asymptotic results for both the velocity–
scalar cospectrum and the scalar spectrum, although of course any mechanism that
requires a resolved viscous range has been neglected in our LES. For reference, we
show in figure 9(b) the energy spectrum from the LES compared with the inertial-range
form (3.23), where we have again used the Kolmogorov constant given by the LES.

6. Concluding remarks
Several properties of the velocity–scalar cospectrum were examined in this study. In

the inertial–convective range, the SDIP result for the cospectrum was shown to agree
with the Lumley (1967) scaling. A comparison was made of the experimental data
of Mydlarski & Warhaft (1998) with the result from the SDIP, the stretched-spiral
vortex model result of O’Gorman & Pullin (2003), and the DNS result. The cospectral
slopes in the inertial–convective range were all found to be shallower than k−7/3, where
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Mydlarski & Warhaft had found k−2 at their largest Rλ. The decay of the cospectrum
with wavenumber in the inertial–convective range was found to be faster than that of
the scalar or the energy spectra, and this is consistent with the idea of an approach
to isotropy at small scales.

The effect on the cospectrum of different Sc was investigated. An upper bound
was derived for the magnitude of the cospectrum in terms of the shell-summed
energy and scalar spectra, with the implication that at high Sc the cospectrum would
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decay exponentially with wavenumber in the viscous–convective range. This limits
the possible contribution of sub-Kolmogorov length scales to the mean scalar flux, a
result that may be important in subgrid modelling of the scalar flux. At low Sc, a new
asymptotic form was found for the velocity–scalar cospectrum, with a k−11/3 power
law wavenumber-dependence in the inertial-diffusive range. The inertial–diffusive
asymptotic forms for the cospectrum and the scalar spectrum were confirmed using
LES, and are in principle subject to experimental verification, perhaps using a liquid
metal. At least in this regime, the forcing of the scalar fluctuation by the mean
scalar gradient is important at large wavenumber for both the scalar spectrum and
the velocity–scalar cospectrum. Although the derivation of the SDIP equation for
the cospectrum was complicated, one advantage of the method is that it was then
relatively inexpensive to investigate a wide range of Sc. Using the SDIP equation,
the asymptotic form of the cospectrum in the inertial–diffusive range was confirmed
and extended to the viscous–diffusive range. At high Sc, the SDIP result for the
cospectrum was indeed found to decay exponentially in the viscous–convective range,
as was expected from the cospectrum inequality.

One possibility for future work, suggested by the DNS results described here, is an
investigation of the Reynolds-number dependence of the cospectrum when plotted
using Kolmogorov scaling. Another possibility for future work is the calculation
of the scalar spectrum using the SDIP in the case of a mean scalar gradient. The
SDIP equation for the passive scalar spectrum would then involve the velocity–scalar
cospectrum, so that in a sense some of the work has already been done.

P.A.OG. and D.I.P. were supported in part by the National Science Foundation
under Grant CTS-0227881. The DNS was performed on the QSC supercomputer,
and was supported by the Academic Strategic Alliances Program of the Accelerated
Strategic Computing Initiative (ASCI/ASAP) under subcontract no. B341492 of DOE
contract W-7405-ENG-48.

Appendix A
Here we will show how the Batchelor et al. (1959) result for the scalar spectrum in

the inertial–diffusive range is modified by the presence of a mean scalar gradient. In
the inertial–diffusive range, we have shown in § 3.3 that an approximate equation for
θ̃(k, t) is given by neglecting the time derivative in (3.19). Multiplying by a similar
expression for θ̃ (−k, t), and taking an ensemble average gives

θ̃(k, t)θ̃(−k, t)κ2k4 = µ2ũ1(k, t)ũ1(−k, t)

−
(

2π

L

)6 ∑
p

∑
q

pjqiũj (−k − p, t)ũi(k − q, t)θ̃( p, t)θ̃(q, t)

+ 2µ

(
2π

L

)3

Re

(
i
∑

q

qiũi(−k − q, t)θ̃(q, t)ũ1(k, t)

)
. (A 1)

Again using |q| � k, | p| � k, and assuming the statistical independence of modes at
wavenumber q or p with modes at k − q, k, or k − p, we find

θ̃ (k, t)θ̃ (−k, t)κ2k4 = µ2ũ1(k, t)ũ1(−k, t)

−
(

2π

L

)6 ∑
p

∑
q

pjqiũj (−k − p, t)ũi(k − q, t)θ̃( p, t)θ̃(q, t).

(A 2)
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This may be simplified to

κ2k4Z̃(k, t, t) = µ2Ṽ 11(k, t, t) + Ṽ 11(k, t, t)

(
2π

L

)3 ∑
q

qjqj Z̃(q, t, t). (A 3)

The sum over q can be related to the scalar dissipation. Taking the limit L → ∞, and
performing a surface integral in wavenumber space leads to

Θ(k) = 2
3
E(k)κ−2k−4

(
µ2 +

εθ

2κ

)
. (A 4)

We are in the inertial range, and so using the appropriate form of the energy spectrum
(3.23) gives the result (3.17), which reduces to the Batchelor et al. (1959) result when
the mean scalar gradient, µ, is set to zero.

Appendix B
This Appendix outlines the derivation of the closed SDIP equations for the velocity–

scalar cospectrum. Further details of the derivation are given in Appendices C, D,
and E.† The exact evolution equations for one-and two-point statistics are derived
in Fourier space in §§ B.1 and B.2. The direct-interaction decompositions are made in
§ B.3, and the closed equations are derived in § B.4. Finally, the simplification of the
equations for the statistically stationary and axisymmetric case is described in § B.5.

B.1. Equations in Fourier space

We begin by writing the governing equations in Fourier space. The incompressibility
of the velocity field implies that kiũi(k, t) = 0. The Navier–Stokes equations (4.1)
become[

∂

∂t
+ νk2

]
ũi(k, t) = − i

2

(
2π

L

)3

P̃ ijm(k)
∑

p

∑
q

(k+ p+q=0)

ũj (− p, t)ũm(−q, t), (B 1)

where P̃ ijm(k) = kmP̃ ij (k) + kj P̃ im(k), and the incompressible projection operator is

given by P̃ ij (k) = δij − kikj/k2. The scalar advection–diffusion equation (3.18) becomes
(3.19) in Fourier space, but here we will use the equivalent symmetric form,[

∂

∂t
+ κk2

]
θ̃ (k, t) = −µũ1(k, t) − ikj

(
2π

L

)3 ∑
p

∑
q

(k+ p+q=0)

ũj (− p, t)θ̃(−q, t). (B 2)

The evolution equation for the Lagrangian position function (4.4) becomes

∂

∂t
ψ̃(k, t |k′, t ′) = −ikj

(
2π

L

)3 ∑
p

∑
q

(k+ p+q=0)

ũj (− p, t)ψ̃(−q, t |k′, t ′), (B 3)

with initial condition

ψ̃(k, t |k′, t ′) =
L3

(2π)6
δ3

k+k′, (B 4)

† These are available as a supplement to the online version or from the JFM Editorial Office.
Cambridge.
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where δ3
k + k′ = 1 if k = −k′, and δ3

k + k′ = 0 otherwise. The Fourier transforms of the
Lagrangian velocity and scalar fields evolve according to

∂

∂t
ṽi(t |k, t ′) = − (2π)6

L3
ν

∑
p

p2ũi( p, t)ψ̃(− p, t |k, t ′)

− i
(2π)9

L6

∑
p

∑
q

∑
r

( p+q+r=0)

rirmrn

r2
ũm( p, t)ũn(q, t)ψ̃(r, t |k, t ′), (B 5)

and

∂

∂t
θ̃ (L)(t |k, t ′) = −µṽ1(t |k, t ′) − (2π)6

L3
κ

∑
p

p2θ̃ ( p, t)ψ̃(− p, t |k, t ′). (B 6)

This may be seen by taking a time derivative of the Fourier space counterparts of
(4.6) and (4.7),

ṽi(t |k, t ′) =
(2π)6

L3

∑
k′

ũi(k
′, t)ψ̃(−k′, t |k, t ′), (B 7)

and

θ̃ (L)(t |k, t ′) =
(2π)6

L3

∑
k′

θ̃(k′, t)ψ̃(−k′, t |k, t ′). (B 8)

The diffusive term in (B 6) is written incorrectly in the paper by Goto & Kida (1999),
although this makes no difference after the SDIP approximations are made.

B.2. Two-point statistics

We will need evolution equations for the two-point quantities W̃i(k, t, t ′) and Ỹi(k, t, t ′),
defined by (4.12) and (4.13), respectively. For one-time correlations we have[

∂

∂t
+ (ν + κ)k2

]
W̃i(k, t, t) = −µṼ 1i(k, t, t)

− ikj

(
2π

L

)6 ∑
p

∑
q

(k+ p+q=0)

ũj (− p, t)θ̃(−q, t)ũi(−k, t)

+
i

2

(
2π

L

)6

P̃ ijm(k)
∑

p

∑
q

(−k+ p+q=0)

ũj (− p, t)ũm(−q, t)θ̃(k, t),

(B 9)

and Ỹi(k, t, t) = W̃i(−k, t, t). For two-time correlations we have that

∂

∂t
W̃i(k, t, t ′) = −µṼ 1i(k, t, t ′) − κ

(2π)9

L6

∑
p

p2 θ̃ ( p, t)ψ̃(− p, t |k, t ′)ũi(−k, t ′), (B 10)

∂

∂t
Ỹi(k, t, t ′) = −i

(2π)12

L9

∑
p

∑
q

∑
r

( p+q+r=0)

rirmrn

r2
ũm( p, t)ũn(q, t)ψ̃(r, t |k, t ′)θ̃ (−k, t ′)

− ν
(2π)9

L6

∑
p

p2ũi( p, t)ψ̃(− p, t |k, t ′)θ̃ (−k, t ′). (B 11)
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It will be necessary to make use of linear response functions in the SDIP calculation.
The Eulerian and Lagrangian scalar response functions are defined as

G̃(k, t |k′, t ′) =
δθ̃ (k, t)

δθ̃ (k′, t ′)
, (B 12)

G̃(L)(t |k, k′, t ′) =
δθ̃ (L)(t |k, t ′)

δθ̃ (k′, t ′)
, (B 13)

with evolution equations[
∂

∂t
+ κk2

]
G̃(k, t |k′, t ′) = −ikj

(
2π

L

)3 ∑
p

∑
q

(k+ p+q=0)

ũj (− p, t)G̃(−q, t |k′, t ′), (B 14)

∂

∂t
G̃(L)(t |k, k′, t ′) = −κ

(2π)6

L3

∑
p

p2G̃( p, t |k′, t ′)ψ̃(− p, t |k, t ′), (B 15)

and initial conditions

G̃(k, t ′|k′, t ′) = G̃(L)(t ′|k, k′, t ′) =
L3

(2π)6
δ3

k+k′ . (B 16)

Here δ is a functional derivative, and our notation is consistent so that, for
example, δθ̃ (k, t)/δθ̃ (k′, t ′) is a Fourier transform with respect to x, followed by a
Fourier transform with respect to x ′ of δθ(x, t)/δθ(x ′, t ′). Similarly, we define Eulerian
and Lagrangian velocity response functions as

G̃
(E)
ij (k, t |k′, t ′) =

δũi(k, t)

δũj (k
′, t ′)

, (B 17)

G̃
(L)
ij (t |k, k′, t ′) =

δṽi(t |k, t ′)

δũj (k
′, t ′)

, (B 18)

with initial conditions

G̃
(E)
ij (k, t ′|k′, t ′) = G̃

(L)
ij (t ′|k, k′, t ′) =

L3

(2π)6
δij δ

3
k+k′ . (B 19)

Details of the evolution equations for G̃
(E)
ij (k, t |k′, t ′) and G̃

(L)
ij (t |k, k′, t ′) may be found

in KG.
We will mostly work with the incompressible projection of G̃

(L)
ij (t |k, k′, t ′), and so

we define

G̃ij (k, t, t ′) =
(2π)6

L3
G̃

(L)
im (t |k, −k, t ′)P̃ mj (k). (B 20)

B.3. DIA decompositions

The basis of the SDIP is the decomposition of the field variables into the sum of
non-direct-interaction (NDI) fields, denoted by the superscript (0), and the deviation
fields, denoted with the superscript (1). For example, we decompose the scalar field
as

θ̃(k, t) = θ̃ (0)(k, t‖k0, p0, q0) + θ̃ (1)(k, t‖k0, p0, q0), (B 21)

where k0, p0 and q0 are a triad of wavevectors such that k0 + p0 + q0 = 0. The initial
conditions for this decomposition are given at time t0 as

θ̃ (0)(k, t0‖k0, p0, q0) = θ̃ (k, t0), θ̃ (1)(k, t0‖k0, p0, q0) = 0. (B 22)
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The evolution of θ̃ (0) is governed by[
∂

∂t
+ κk2

]
θ̃ (0)(k, t‖k0, p0, q0) = −ikj

(
2π

L

)3 ∑
p

∑
q

′

(k+ p+q=0)

ũj (− p, t)θ̃ (0)(−q, t‖k0, p0, q0)

− µũ1(k, t), (B 23)

where
∑ ∑ ′

denotes a summation that excludes interactions between the triad k0,
p0, and q0. Subtracting (B 23) from (B 2) we find[

∂

∂t
+ κk2

]
θ̃ (1)(k, t‖k0, p0, q0) = −ikj

(
2π

L

)3 ∑
p

∑
q

′

(k+ p+q=0)

ũj (− p, t)θ̃ (1)(−q, t‖k0, p0, q0)

− iδ3
k−k0

k0j ũj (− p0, t)θ̃
(0)(−q0, t‖k0, p0, q0)

− iδ3
k−k0

k0j ũj (−q0, t)θ̃
(0)(− p0, t‖k0, p0, q0)

+ iδ3
k+k0

k0j ũj ( p0, t)θ̃
(0)(q0, t‖k0, p0, q0)

+ iδ3
k+k0

k0j ũj (q0, t)θ̃
(0)( p0, t‖k0, p0, q0)

+ (k0 → p0 → q0 → k0). (B 24)

Similar decompositions are made for the Eulerian velocity field, ũ(k, t), the position
function, ψ̃(k, t |k′, t ′), the Eulerian velocity response function G̃

(E)
ij (k, t |k′, t ′), and the

Lagrangian velocity response function G̃
(L)
ij (t |k, k′, t ′), see KG. We also decompose

the Eulerian scalar response function, G̃(k, t |k′, t ′), see Goto & Kida (1999). The
deviation fields can then be expressed in terms of the NDI fields and the response
functions. For example, the scalar deviation field is given by

θ̃ (1)(k, t‖k0, p0, q0) = −ikj

(2π)9

L6

∫ t

t0

dt ′G̃(0)(k, t | − k, t ′‖k0, p0, q0)

×
[
δ3

k−k0
ũj (− p0, t

′)θ̃ (0)(−q0, t
′‖k0, p0, q0)

+ δ3
k−k0

ũj (−q0, t
′)θ̃ (0)(− p0, t

′‖k0, p0, q0)

+ δ3
k+k0

ũj ( p0, t
′)θ̃ (0)(q0, t

′‖k0, p0, q0)

+ δ3
k+k0

ũj (q0, t
′)θ̃ (0)( p0, t

′‖k0, p0, q0)

+ (k0 → p0 → q0 → k0)
]
. (B 25)

B.4. Evolution equations for W̃ (k, t, t), W̃ (k, t, t ′) and X̃(k, t, t ′)

The main purpose of the SDIP is to express third-order correlations in terms
of second-order correlations so that closed evolution equations for second-order
quantities can be derived. There are three main assumptions in the SDIP procedure:
(i) The magnitude of the deviation field is smaller than that of the NDI field for times
(t−t0) within the correlation time scale of the velocity field. (ii) Any two Fourier modes
of the NDI fields without direct interaction are statistically independent of each other.
For example, θ̃ (0)(k0, t‖k0, p0, q0), θ̃ (0)( p0, t

′‖k0, p0, q0) and ũ
(0)
k (q0, t

′′‖k0, p0, q0) are
statistically independent. (iii) The NDI position function field, ψ̃ (0), is statistically
independent of the other Eulerian quantities, such as ũ

(0)
i and θ̃ (0). Additional statistical

assumptions were required in KG involving the position response function, but this
function is not used here.
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Assumptions (i) and (ii) were tested for a model system in Goto & Kida (1998,
2002), but assumption (iii) is difficult to justify. Assumption (iii) will be used several
times throughout the derivation to reduce Lagrangian averages, expressed using the
position function, to simpler Eulerian averages. It could be argued that this crude
treatment of the statistics of the position function means that the SDIP is not a truly
Lagrangian closure theory. We nonetheless proceed with this assumption as it leads
to a tractable closure.

SDIP approximations to (B 9) and (B 10) are derived in Appendix C using the
DIA decompositions and the above three assumptions, and following the method
introduced by KG and Goto & Kida (1999). The results are[

∂

∂t
+ (ν + κ)k2

]
W̃i(k, t, t) =

(
2π

L

)3 ∑
p

∑
q

(k+ p+q=0)

∫ t

t0

dt ′Li(k, p, q, t, t ′)

− µṼ 1i(k, t, t), (B 26)

where

Li(k, p, q, t, t ′)

= kj (Q̃ib(−k, t, t ′)W̃c(−q, t, t ′)[pcG̃jb(− p, t, t ′) + pbG̃jc(− p, t, t ′)]

+ (i ↔ j, k ↔ p)) + kjql exp[−κq2(t − t ′)][Q̃jl(− p, t, t ′)X̃i(−k, t, t ′)

+ Q̃il(−k, t, t ′)X̃j (− p, t, t ′)] + P̃ ijm(k)(Q̃mc(q, t, t ′)W̃b(k, t, t ′)[pcG̃jb( p, t, t ′)

+ pbG̃jc( p, t, t ′)] + 1
2
klP̃ ijm(k)exp[−κk2(t − t ′)][Q̃jl( p, t, t ′)X̃m(q, t, t ′)

+ Q̃ml(q, t, t ′)X̃j ( p, t, t ′)], (B 27)

and [
∂

∂t
+ κk2

]
W̃i(k, t, t ′) = −µṼ 1i(k, t, t ′). (B 28)

It is easier to work with X̃i(k, t, t ′), defined by (4.15), rather than Ỹ i(k, t, t ′), and
so the SDIP approximation to the incompressible projection of (B 11) is derived in
Appendix D,[

∂

∂t
+ νk2

]
X̃i(k, t, t ′)

= −2

(
2π

L

)3 ∑
p

∑
q

(k+ p+q=0)

P̃ il(k)
qlqmqnqj

q2
X̃n(k, t, t ′)

∫ t

t ′
dt ′′Q̃mj ( p, t, t ′′). (B 29)

Taking the L → ∞ limit, the system of integro-differential equations to be solved can
be summarized as[

∂

∂t
+ (ν + κ)k2

]
W̃i(k, t, t) =

∫
d p

∫
dqδ3

k+ p+q

∫ t

t0

dt ′Li(k, p, q, t, t ′)

− µṼ 1i(k, t, t), (B 30)[
∂

∂t
+ νk2

]
X̃i(k, t, t ′)

= −2P̃ il(k)

∫
d p

∫
dqδ3

k+ p+q
qlqmqnqj

q2
X̃n(k, t, t ′)

∫ t

t ′
dt ′′Q̃mj ( p, t, t ′′), (B 31)
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together with (B 28) for W̃i(k, t, t ′) and the initial condition,

X̃i(k, t, t) = W̃i(−k, t, t). (B 32)

This is a closed system of equations for W̃i(k, t, t ′) and X̃i(k, t, t ′) once the velocity
field statistics Ṽ ij (k, t, t ′), Q̃ij (k, t, t ′) and G̃ij (k, t, t ′) are specified.

B.5. Spatial symmetries and stationarity

We now use the spatial symmetries and stationarity of the problem to simplify our
equations. The velocity field is isotropic and stationary, and so we can write (4.16)
and

G̃ij (k, t, t ′) = P̃ ij (k)G†(k, t − t ′). (B 33)

Note that although G̃ij (k, t, t ′) does not satisfy kiG̃ij (k, t, t ′) = 0 in the general case,

the incompressible property kj G̃ij (k, t, t ′) = 0 is sufficient to give the form (B 33) in

the isotropic case. Similarly, the condition kj Ṽ ij (k, t, t ′) = 0 together with isotropy is
sufficient to ensure that

Ṽ ij (k, t, t ′) = 1
2
P̃ ij (k)V †(k, t − t ′). (B 34)

The definition (4.1.4) of Q̃ij (k, t, t ′) then implies that V †(k, t) = Q†(k, t).
We turn now to statistical quantities involving the scalar. It will be convenient to

generalize briefly to the case of an arbitrary mean scalar gradient µi . Axisymmetry
and the condition kiW̃i(k, t, t ′) = 0 imply that,

W̃i(k, t, t ′) = f (k, t, t ′, µ, kjµj )

(
µi − ki

ksµs

k2

)
. (B 35)

The scalar, and therefore W̃i(k, t, t ′), depend linearly on the mean scalar gradient µi

after initial fluctuations decay, and so we can write W̃i(k, t, t ′) = P̃ ij (k)µjW
†(k, t − t ′).

In our case, the mean scalar gradient is in the ‘1’ direction and so we find (4.17).
Using a similar argument for the form of X̃i(k, t, t ′), we find

X̃i(k, t, t ′) = P̃ i1(k)µX†(k, t − t ′). (B 36)

Substituting into (B 28) leads to[
∂

∂t
+ κk2

]
W †(k, t) = − 1

2
Q†(k, t), (B 37)

and this may be solved to give (4.18).
Making a comparison between the evolution equation for Q̃ij (k, t, t ′) in KG, and

the evolution equation (B 29) for X̃i(k, t, t ′) here, it is easy to show that X†(k, t) and
Q†(k, t) have the same evolution equation. This can be written as[

∂

∂t
+ νk2 + η̂(k, t)

]
X†(k, t) = 0, (B 38)

where

η̂(k, t) =
4π

3
k5

∫ ∞

0

dpp10/3J
(
p2/3

) ∫ t

0

dt ′Q†(kp, t ′), (B 39)

and

J (p) =
3

32p5

(
(1 − p3)4

2p3/2
log

[
1 + p3/2∣∣1 − p3/2

∣∣
]

− 1 + p3

3
(3p6 − 14p3 + 3)

)
. (B 40)
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Therefore,

X†(k, t) =
Q†(k, t)

Q†(k, 0)
W †(k, 0), (B 41)

where we have used (B 32). Finally, we substitute the isotropic forms into the
integro-differential equation (B 30) for W̃i(k, t, t). The calculation is made easier
by recasting (B 30) in the form Lijµj = 0, for a general scalar gradient µj , and then
proceeding by setting Lii = 0. Using (B 41), and the important relation derived in
KG, Q†(k, t) = G†(k, t)Q†(k, 0), and after considerable algebra, we find the integral
equation (4.19). Note that we have let (t − t0) → ∞, and this is justified by the
exponential decay of Q†(k, t) with respect to t . Extensive use has been made of
relations between geometric factors such as k2σ (k, p, q) = kjkmP̃ jm( p).
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